Hvad er Additive Inverse? Egenskaber og eksempler

2774
Robert Johnston

Det additiv invers af et tal er dets modsatte, det vil sige det er det tal, der når det føjes til sig selv, ved hjælp af et modsat tegn, giver et resultat svarende til nul. Med andre ord ville additivet invers af X være Y, hvis og kun hvis X + Y = 0.

Additivets inverse er det neutrale element, der bruges i en tilføjelse for at opnå et resultat svarende til 0. Inden for de naturlige tal eller tal, der bruges til at tælle elementer i et sæt, har alle et additivt invers minus "0", da det er i sig selv dets additive inverse. På denne måde er 0 + 0 = 0.

Additivet omvendt af et naturligt tal er et tal, hvis absolutte værdi har den samme værdi, men med et modsat tegn. Dette betyder, at additivet invers på 3 er -3, fordi 3 + (-3) = 0.

Additivets egenskaber invers

Første ejendom

Tilsætningsstoffets inverse hovedegenskab er det, hvorfra navnet stammer. Dette indikerer, at hvis et helt tal - tal uden decimaler - tilføjes dets additive inverse, skal resultatet være "0". A) Ja:

5 - 5 = 0

I dette tilfælde er additivet invers af "5" "-5".

Anden ejendom

En nøgleegenskab ved additivets inverse er, at subtraktion af ethvert tal svarer til summen af ​​dets additive inverse.

Numerisk ville dette koncept blive forklaret som følger:

3 - 1 = 3 + (-1)

2 = 2

Denne egenskab ved additivets inverse forklares ved subtraktionens egenskab, hvilket indikerer, at hvis vi tilføjer den samme mængde til minuend og subtrahend, skal forskellen i resultatet opretholdes. Nemlig:

3 - 1 = [3 + (-1)] - [1 + (-1)]

2 = [2] - [0]

2 = 2

På denne måde, når man ændrer placeringen af ​​en hvilken som helst af værdierne på siderne af lige, ville dets tegn også blive ændret og således kunne opnå additivet invers. A) Ja:

2 - 2 = 0

Her trækkes "2" med et positivt tegn fra den anden side af ligen og bliver additivet invers..

Denne egenskab gør det muligt at omdanne en subtraktion til en tilføjelse. I dette tilfælde, da de er heltal, er det ikke nødvendigt at udføre yderligere procedurer for at udføre processen med at fratrække elementer..

Tredje ejendom

Additivets inverse kan let beregnes ved hjælp af en simpel aritmetisk operation, som består i at multiplicere antallet, hvis additive inverse vi vil finde med "-1". A) Ja:

5 x (-1) = -5

Så additivet invers af "5" vil være "-5".

Eksempler på omvendt additiv

a) 20 - 5 = [20 + (-5)] - [5 + (-5)]

25 = [15] - [0]

15 = 15

15 - 15 = 0. Tilsætningsstoffet invers af “15” vil være “-15”.

b) 18 - 6 = [18 + (-6)] - [6 + (-6)]

12 = [12] - [0]

12 = 12

12 - 12 = 0. Tilsætningsstoffet invers af “12” vil være “-12”.

c) 27 - 9 = [27 + ​​(-9)] - [9 + (-9)]

18 = [18] - [0]

18 = 18

18 - 18 = 0. Tilsætningsstoffet invers af “18” vil være “-18”.

d) 119 - 1 = [119 + (-1)] - [1 + (-1)]

118 = [118] - [0]

118 = 118

118 - 118 = 0. Tilsætningsstoffet invers af “118” vil være “-118”.

e) 35 - 1 = [35 + (-1)] - [1 + (-1)]

34 = [34] - [0]

34 = 34

34 - 34 = 0. Tilsætningsstoffets inverse af “34” vil være “-34”.

f) 56 - 4 = [56 + (-4)] - [4 + (-4)]

52 = [52] - [0]

52 = 52

52 - 52 = 0. Additivet invers af “52” vil være “-52”.

g) 21 - 50 = [21 + (-50)] - [50 + (-50)]

-29 = [-29] - [0]

-29 = -29

-29 - (29) = 0. Tilsætningsstoffet invers af “-29” vil være “29”.

h) 8 - 1 = [8 + (-1)] - [1 + (-1)]

7 = [7] - [0]

7 = 7

7 - 7 = 0. Tilsætningsstoffets inverse af "7" vil være "-7".

i) 225 - 125 = [225 + (-125)] - [125 + (-125)]

100 = [100] - [0]

100 = 100

100 - 100 = 0. Tilsætningsstoffets inverse af "100" vil være "-100".

j) 62 - 42 = [62 + (-42)] - [42 + (-42)]

20 = [20] - [0]

20 = 20

20 - 20 = 0. Additivet invers af “20” vil være “-20”.

k) 62 - 42 = [62 + (-42)] - [42 + (-42)]

20 = [20] - [0]

20 = 20

20 - 20 = 0. Additivet invers af “20” vil være “-20”.

l) 62 - 42 = [62 + (-42)] - [42 + (-42)]

20 = [20] - [0]

20 = 20

20 - 20 = 0. Tilsætningsstoffets inverse af “20” vil være “-20”.

m) 62 - 42 = [62 + (-42)] - [42 + (-42)]

20 = [20] - [0]

20 = 20

20 - 20 = 0. Additivet invers af “20” vil være “-20”.

n) 62 - 42 = [62 + (-42)] - [42 + (-42)]

20 = [20] - [0]

20 = 20

20 - 20 = 0. Additivet invers af “20” vil være “-20”.

o) 655 - 655 = 0. Tilsætningsstoffet invers af “655” vil være “-655”.

p) 576 - 576 = 0. Tilsætningsstoffets inverse af "576" vil være "-576".

q) 1234 - 1234 = 0. Tilsætningsstoffet invers af “1234” vil være “-1234”.

r) 998 - 998 = 0. Tilsætningsstoffets inverse af "998" vil være "-998".

s) 50 - 50 = 0. Tilsætningsstoffet invers af "50" vil være "-50".

t) 75 - 75 = 0. Tilsætningsstoffet invers af "75" vil være "-75".

u) 325 - 325 = 0. Tilsætningsstoffet invers af “325” vil være “-325”.

v) 9005 - 9005 = 0. Tilsætningsstoffets inverse af “9005” vil være “-9005”.

w) 35 - 35 = 0. Tilsætningsstoffet invers af "35" vil være "-35".

x) 4 - 4 = 0. Tilsætningsstoffet invers af “4” vil være “-4”.

y) 1 - 1 = 0. Tilsætningsstoffet invers af “1” vil være “-1”.

z) 0 - 0 = 0. Tilsætningsstoffet invers af "0" vil være "0".

aa) 409 - 409 = 0. Additivet invers af "409" vil være "-409".

Referencer

  1. Burrell, B. (1998). Tal og beregning. I B. Burrell, Merriam-Websters vejledning til hverdagsmatematik: et hjem og en forretningsreference (s. 30). Springfield: Merriam-Webster.
  2. Coolmath.com. (2017). Cool matematik. Hentet fra den additive inverse egenskab: coolmath.com
  3. Online kursus om hele tal. (Juni 2017). Hentet fra Inverso Aditivo: eneayudas.cl
  4. Freitag, M. A. (2014). Omvendt additiv. I M. A. Freitag, Matematik til grundskolelærere: En procestilgang (s. 293). Belmont: Brooks / Cole.
  5. Szecsei, D. (2007). Algebra-matricerne. I D. Szecsei, Forudregning (s.185). New Jersery: Career Press.

Endnu ingen kommentarer