Håber matematisk formel, egenskaber, eksempler, øvelse

5058
Basil Manning

Det matematisk håb eller forventet værdi af tilfældig variabel X, betegnes som E (X) og defineres som summen af ​​produktet mellem sandsynligheden for en tilfældig hændelse og værdien af ​​nævnte hændelse.

I matematisk form udtrykkes det som følger:

μ = E (X) = ∑ xjeg. P (xjeg) = x1.P (x1) + xto.P (xto) + x3.P (x3) + ...

Figur 1. Matematisk forventning bruges i vid udstrækning på aktiemarkedet og inden for forsikring. Kilde: Pixabay.

Hvor xjeg er hændelsens værdi og P (xjeg) dens sandsynlighed for forekomst. Summationen strækker sig over alle de værdier, som X tillader. Og hvis disse er endelige, konvergerer den angivne sum til værdien E (X), men hvis summen ikke konvergerer, har variablen simpelthen ingen forventet værdi.

Når det kommer til en kontinuerlig variabel x, variablen kan have uendelige værdier, og integralerne erstatter summeringerne:

Her repræsenterer f (x) sandsynlighedsdensitetsfunktion.

Generelt er den matematiske forventning (som er et vægtet gennemsnit) ikke lig med det aritmetiske gennemsnit eller gennemsnit, medmindre vi har at gøre med diskrete fordelinger, hvor hver begivenhed er lige sandsynlig. Så og først derefter:

μ = E (X) = (1 / n) ∑ xjeg

Hvor n er antallet af mulige værdier.

Konceptet er meget nyttigt på de finansielle markeder og forsikringsselskaber, hvor sikkerhed ofte mangler, men der er sandsynligheder..

Artikelindeks

  • 1 Egenskaber ved matematisk forventning
    • 1.1 Den matematiske forventning i væddemål
  • 2 Eksempler 
    • 2.1 Eksempel 1
    • 2.2 Eksempel 2
  • 3 Øvelse løst
  • 4 Referencer

Egenskaber ved matematisk forventning

Blandt de vigtigste egenskaber ved matematisk forventning skiller følgende sig ud:

- Skilt: hvis X er positiv, så vil E (X) også være.

- Forventet værdi af en konstant: den forventede værdi af en reel konstant k er den konstante.

E (k) = k

- Linearitet i summen: forventningen om en tilfældig variabel, der igen er summen af ​​to variabler X og Y er summen af ​​forventningerne.

E (X + Y) = E (X) + E (Y)

- Multiplikation med en konstant: hvis den tilfældige variabel er af formen kX, hvor k er et konstant (et reelt tal), det kommer ud uden for den forventede værdi.

E (kX) = k E (X)

- Forventet værdi af produktet og uafhængighed mellem variabler: hvis en tilfældig variabel er produktet af de tilfældige variabler X og Y, som er uafhængige, så er den forventede værdi af produktet produktet af de forventede værdier.

E (X.Y) = E (X). E (Y)

- Tilfældig variabel i formularen Y = aX + b: fundet ved at anvende de tidligere egenskaber.

E (aX + b) = aE (X) + E (b) = aE (X) + b

Generelt ja Y = g (X):

E (Y) = E [g (X)] = ∑ g (xjeg). P [g (xjeg)]

- Bestilling på forventet værdi: hvis X ≤ Y, så:

E (X) ≤ E (Y)

Da der er de forventede værdier for hver af dem.

Det matematiske håb i væddemål

Da den berømte astronom Christian Huygens (1629-1695) ikke observerede himlen, helligede han sig til at studere blandt andre discipliner sandsynlighed i hasardspil. Det var han, der introducerede begrebet matematisk håb i sit arbejde fra 1656 med titlen: Ræsonnement om spil.

Figur 2. Christiaan Huygens (1629-1625) var en strålende og alsidig videnskabsmand, som vi skylder begrebet forventet værdi..

Huygens fandt ud af, at væddemål kunne klassificeres på tre måder baseret på forventet værdi:

-Fordelsspil: E (X)> 0

-Fair bets: E (X) = 0

-Handicapspil: E (X) < 0

Problemet er, at den matematiske forventning ikke altid er let at beregne i et hasardspil. Og når du kan, er resultatet undertiden skuffende for dem, der spekulerer på, om de vil satse eller ej.

Lad os prøve en simpel indsats: hoveder eller haler, og taberen betaler en $ 1 kaffe. Hvad er den forventede værdi af dette væddemål?

Nå, sandsynligheden for, at hoveder rulles, er ½, lig med haler. Den tilfældige variabel er at vinde $ 1 eller tabe $ 1, gevinsten betegnes med + tegn og tabet ved tegn -.

Vi organiserer oplysningerne i en tabel:

Vi ganger kolonnernes værdier: 1. ½ = ½ og (-1). ½ = -½ og til sidst tilføjes resultaterne. Summen er 0, og det er et retfærdigt spil, hvor deltagere hverken forventes at vinde eller tabe.

Fransk roulette og lotteri er handicapspil, hvor de fleste spillere taber. Senere er der en lidt mere kompleks indsats i afsnittet om løste øvelser.

Eksempler 

Her er nogle enkle eksempler, hvor begrebet matematisk forventning er intuitivt og tydeliggør begrebet:

Eksempel 1

Vi starter med at rulle en ærlig matrice. Hvad er den forventede værdi af lanceringen? Hvis matricen er ærlig og har 6 hoveder, er sandsynligheden for, at en hvilken som helst værdi (X = 1, 2, 3… 6) vil rulle 1/6, sådan her:

E (X) = 1. (1/6) + 2. (1/6) + 3. (1/6) + 4. (1/6) + 5. (1/6) + 6. (1 / 6) = 21/6 = 3,5

Figur 3. I rullen af ​​en ærlig matrix er den forventede værdi ikke en mulig værdi. Kilde: Pixabay.

Den forventede værdi i dette tilfælde er lig med gennemsnittet, da hvert ansigt har samme sandsynlighed for at komme ud. Men E (X) er ikke en mulig værdi, da ingen hoveder er 3,5 værd. Dette er perfekt muligt i nogle distributioner, skønt resultatet i dette tilfælde ikke hjælper vædderne meget..

Lad os se et andet eksempel med kastet af to mønter.

Eksempel 2

To ærlige mønter kastes i luften, og vi definerer den tilfældige variabel X som antallet af hoveder, der rulles. De begivenheder, der kan forekomme, er følgende:

-Ingen hoveder kommer op: 0 hoveder, der svarer til 2 haler.

-Returnerer 1 hoved og 1 haler eller haler.

-2 ansigter kommer ud.

Lad C være et hoved og T et segl, prøveområdet, der beskriver disse begivenheder, er som følger:

Sm = Seal-Seal; Seal-Face; Ansigtsforsegling; Face-Face = TT, TC, CT, CC

Sandsynligheden for de begivenheder, der sker, er:

P (X = 0) = P (T). P (T) = ½. ½ = ¼

P (X = 1) = P (TC) + P (CT) = P (T). P (C) + P (C). P (T) = ¼ + ¼ = ½

P (X = 2) = P (C). P (C) = ½. ½ = ¼

Tabellen er bygget med de opnåede værdier:

Ifølge den definition, der blev givet i starten, beregnes den matematiske forventning som:

μ = E (X) = ∑ xjeg. P (xjeg) = x1.P (x1) + xto.P (xto) + x3.P (x3) + ...

Erstatning af værdier:

E (X) = 0. ¼ + 1. ½ + 2. ¼ = ½ + ½ = 1

Dette resultat fortolkes som følger: Hvis en person har tid nok til at udføre et stort antal eksperimenter ved at vende de to mønter, forventes de at få et hoved på hver flip..

Vi ved dog, at udgivelser med 2 etiketter er helt mulige..

Træning løst

I kastet af to ærlige mønter foretages følgende indsats: Hvis der kommer 2 hoveder, vindes $ 3, hvis der kommer 1 hoved, vindes $ 1, men hvis der kommer to frimærker, skal $ 5 betales. Beregn den forventede gevinst for væddemålet.

Figur 4. Afhængigt af indsatsen ændres den matematiske forventning, når du kaster to ærlige mønter. Kilde: Pixabay.

Opløsning

Den tilfældige variabel X er de værdier, som pengene tager i væddemålet, og sandsynlighederne blev beregnet i det foregående eksempel, og derfor er væddemålets tabel:

E (X) = 3. ¼ + 1. ½ + (-5). ¼ = 0

Da den forventede værdi er 0, er det retfærdigt spil, så her forventes spillerne ikke at vinde og heller ikke tabe. Imidlertid kan væddemålene ændres for at gøre væddemålet til et handicapspil eller et handicapspil..

Referencer

  1. Brase, C. 2009. Forståelig statistik. Houghton mifflin.
  2. Olmedo, F. Introduktion til begrebet forventet værdi eller matematisk forventning om en tilfældig variabel. Gendannet fra: personal.us.es.
  3. Statistik LibreTexts. Forventet værdi af diskrete tilfældige variabler. Gendannet fra: stats.libretexts.org.
  4. Triola, M. 2010. Elementær statistik. 11. Ed. Addison Wesley.
  5. Walpole, R. 2007. Sandsynlighed og statistik for videnskab og teknik. 8. plads Udgave. Pearson Uddannelse.

Endnu ingen kommentarer